首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51941篇
  免费   5969篇
  国内免费   9322篇
化学   42509篇
晶体学   1934篇
力学   3228篇
综合类   488篇
数学   5449篇
物理学   13624篇
  2024年   81篇
  2023年   528篇
  2022年   960篇
  2021年   1301篇
  2020年   1953篇
  2019年   1673篇
  2018年   1387篇
  2017年   1626篇
  2016年   2113篇
  2015年   2043篇
  2014年   2495篇
  2013年   3982篇
  2012年   4157篇
  2011年   3060篇
  2010年   2618篇
  2009年   3260篇
  2008年   3531篇
  2007年   3642篇
  2006年   3426篇
  2005年   3136篇
  2004年   3012篇
  2003年   2527篇
  2002年   2027篇
  2001年   1465篇
  2000年   1412篇
  1999年   1195篇
  1998年   1092篇
  1997年   1004篇
  1996年   1015篇
  1995年   971篇
  1994年   862篇
  1993年   683篇
  1992年   671篇
  1991年   423篇
  1990年   311篇
  1989年   234篇
  1988年   230篇
  1987年   171篇
  1986年   137篇
  1985年   153篇
  1984年   111篇
  1983年   68篇
  1982年   90篇
  1981年   86篇
  1980年   68篇
  1979年   67篇
  1978年   37篇
  1977年   24篇
  1976年   26篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
61.
A theoretical model of an elastic panel in hypersonic flow is derived to be used for design and analysis. The nonlinear von Kármán plate equations are coupled with 1st order Piston Theory and linearized at the nonlinear steady-state deformation due to static pressure differential and thermal loads. Eigenvalue analysis is applied to determine the system’s stability, natural frequencies and mode shapes. Numerically time marching the equations provides transient response prediction which can be used to estimate limit cycle oscillation amplitude, frequency and time to onset. The model’s predictive capability is assessed by comparison to an experiment conducted at a free stream flow of Mach 6. Good agreement is shown between the theoretical and experimental natural frequencies and mode shapes of the fluid–structure system. Stability analysis is performed using linear and nonlinear methods to plot stability, flutter and buckling zones on a free stream static pressure vs temperature differential plane.  相似文献   
62.
Flow physics of transvalvular flows in the aorta with bioprosthetic valves are investigated using computational modelling. For the efficient simulations of flow-structure-interaction in transvalvular flows, a simplified, reduced degree of freedom valve model is employed with a sharp interface immersed boundary based incompressible flow solver. Simulations are performed for normal as well as abnormal valves with reduced leaflet motion that models the effect of early leaflet thrombosis. The structure of the aortic jet and the hemodynamic stresses on the aortic wall are analysed to understand the hemodynamic impacts and possible long-term clinical implications of sub-clinical, reduced leaflet motion. The simulation results have shown that the reduced leaflet motion tilts the direction of aortic jet and generates stronger flow separation and re-attachment on the aortic wall downstream from the reduced motion leaflets. The modified flow pattern increases the wall pressure fluctuation and average wall shear stress on the downstream aortic wall, and results in the asymmetric oscillatory shear index distributions, which may have long-term clinical implications such as aortic wall damage and remodelling.  相似文献   
63.
In order to investigate the effect of density ratio of fluid and solid on the convergence behavior of partitioned FSI algorithm, three strong-coupling partitioned algorithms (fixed-point method with a constant under-relaxation parameter, Aitken’s method and Quasi-Newton inverse least squares (QN-ILS) method) have been considered in the context of finite element method. We have employed the incompressible Navier–Stokes equations for a Newtonian fluid domain and the total Lagrangian formulation for a non-linear motion of solid domain. Linear-elastic (hyper-elastic) model has been employed for solid material with small (large) deformation. A pulsatile inlet-flow interacting with a 2D circular channel of linear-elastic material and a pressure wave propagation in a 3D flexible vessel have been simulated. Both linear-elastic and hyper-elastic (Mooney–Rivlin) models have been adopted for the 3D flexible vessel. From the present numerical experiments, we have found that QN-ILS outperforms the others leading to a robust convergence regardless of the density ratio for both linear-elastic and hyper-elastic models. On the other hand, the performances of the fixed-point method with a constant under-relaxation parameter and the Aitken’s method depend strongly on the density ratio, relaxation parameter selected for coupling iteration, and degree of deformation. Although the QN-ILS of this work is still slower than a monolithic method for serial computation, it has an advantage of easier parallelization due to the modularity of the partitioned FSI algorithm.  相似文献   
64.
The tridentate organic ligand 4,4′,4′′‐(4,4,8,8,12,12‐hexamethyl‐8,12‐dihydro‐4H‐benzo[9,1]quinolizino[3,4,5,6,7‐defg]acridine‐2,6,10‐triyl)tribenzoic acid ( H3L ) has been synthesized (as the methanol 1.25‐solvate, C48H39NO6·1.25CH3OH). As a donor–acceptor motif molecule, H3L possess strong intramolecular charge transfer (ICT) fluorescence. Through hydrogen bonds, H3L molecules construct a two‐dimensional (2D) network, which pack together into three‐dimensional (3D) networks with an ABC stacking pattern in the crystalline state. Based on H3L and M(NO3)2 salts (M = Cd and Zn) under solvothermal conditions, two metal–organic frameworks (MOFs), namely, catena‐poly[[triaquacadmium(II)]‐μ‐10‐(4‐carboxyphenyl)‐4,4′‐(4,4,8,8,12,12‐hexamethyl‐8,12‐dihydro‐4H‐benzo[9,1]quinolizino[3,4,5,6,7‐defg]acridine‐2,6‐diyl)dibenzoato], [Cd(C48H37NO6)(H2O)3]n, I , and poly[[μ3‐4,4′,4′′‐(4,4,8,8,12,12‐hexamethyl‐8,12‐dihydro‐4H‐benzo[9,1]quinolizino[3,4,5,6,7‐defg]acridine‐2,6,10‐triyl)tribenzoato](μ3‐hydroxido)zinc(II)], [Zn2(C48H36NO6)(OH)]n, II , were synthesized. Single‐crystal analysis revealed that both MOFs adopt a 3D structure. In I , partly deprotonated HL 2? behaves as a bidentate ligand to link a CdII ion to form a one‐dimensional chain. In the solid state of I , the existence of weak interactions, such as O—H…O hydrogen bonds and π–π interactions, plays an essential role in aligning 2D nets and 3D networks with AB packing patterns for I . The deprotonated ligand L 3? in II is utilized as a tridentate building block to bind ZnII ions to construct 3D networks, where unusual Zn4O14 clusters act as connection nodes. As a donor–acceptor molecule, H3L exhibits fluorescence with a photoluminescence quantum yield (PLQY) of 70% in the solid state. In comparison, the PL of both MOFs is red‐shifted with even higher PLQYs of 79 and 85% for I and II , respectively.  相似文献   
65.
胡寒  聂国隽 《力学季刊》2020,41(1):69-79
假设纤维方向角沿层合板的长度方向线性变化,研究了变角度纤维复合材料层合斜板的颤振.通过坐标变换将斜板变换为正方形板,采用层合板表面连续变化的速度环量来模拟空气对其的作用,速度环量分布利用Cauchy积分公式计算.建立了系统的Lagrange方程并采用Ritz法得到了层合板的自振频率和颤振/不稳定性分离临界速度.通过数值算例验证了本文模型和方法的正确性和收敛性,分析了各个铺层内纤维方向角的变化对自振频率和颤振/不稳定性分离临界速度的影响.研究结果表明,通过纤维的变角度铺设,可有效地提高层合板的基频和颤振/不稳定性分离临界速度.经合理设计的变角度复合材料层合板具有抑制颤振的作用.  相似文献   
66.
The effects of air freezing (AF), immersion freezing (IF) and ultrasound-assisted immersion freezing (UF) at different power levels (125, 165, 205 and 245 W) on the structure and gel properties of the myofibrillar protein (MP) of chicken breast were investigated. UF at 165 W (UF-165) had no obvious negative impact on the primary structure of the MP and effectively reduced the change in the secondary and tertiary structure. In addition, UF-165 significantly reduced the losses in the elastic modulus (G′), gel strength, and gel water holding capacity (P < 0.05). According to low field nuclear magnetic resonance analysis, the T21 and T22 of the UF-165 MP gels were shorter than those of the AF and IF samples, which meant that the UF-165 reduced the mobility of the immobilized water and free water in MP gel. A scanning electron microscopy analysis showed that the appropriate ultrasonic power promoted the formation of a compact and homogeneous protein gel network. These results suggested that the appropriate ultrasonic power maintained the MP structure and reduced the loss of gel quality.  相似文献   
67.
68.
The in vitro protein digestibility (IVPD) of napin was studied using different pretreatment methods, including ultrasound, mixing napin with lactalbumin, and ultrasound-assisted protein mixing. The relationships between IVPD, molecular structure, and disulfide bonds were explored, showing that the IVPD of napin was the highest compared with the control when treated with 40% ultrasound power. When the proportion of napin to lactalbumin was 5:5, a synergistic influence between the two proteins was observed. Further investigation showed that the IVPD of napin was clearly improved by treatment with ultrasound-assisted protein mixing. Compared with the single protein in the control, the β-sheet content in the secondary structure of the mixed protein after sonication was reduced from 45.02% to 37.16%. The ordered protein structure was also disrupted by ultrasound, as supported by fluorescence intensity and surface hydrophobicity analyses. The decreased number of disulfide bonds and conformational changes indicated that the IVPD of rapeseed napin was closely related to the disulfide bond content. This study provides a theoretical basis for improving protein digestibility by combining ultrasound with physical mixing.  相似文献   
69.
BiVO4,a promising visible-light responding photocatalyst,has aroused extensive research interest because of inexpensiveness and excellent chemical stability.However,its main drawback is the poor photoinduced charge-transfer dynamics.Building nanostructures is an effective way to tackle this problem.Herein,we put forward a new method to prepare nanostructured BiVO4 from Bi-based metal-organic frameworks[Bi-MOF(CAU-17)]precursor.The as-prepared material has a rod-like morphology inherited from the Bi-MOF sacrificial template and consists of small nanoparticle as building blocks.Compared with its counterparts prepared by conventional methods,MOF-derived nanostructured BiVO4 shows better light absorption ability,narrower bandgap,and improved electrical conductivity as well as reduced recombination.Consequently,BiVO4 nanostructure demonstrates high photocatalytic activity under visible light towards the degradation of methylene blue.Methylene blue can be degraded up to 90%within 30 min with a reaction rate constant of 0.058 min-1.Moreover,the cycling stability of the catalyst is excellent to withstand unchanged degradation efficiency for at least 5 cycles.  相似文献   
70.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号